Aufgabe 1: Hybrid-Orbitale

Sind die drei sp², sowie die vier sp³ hybridisierten Orbitale des Kohlenstoffs zueinander orthogonal? Die Definition der Integrale ist z.B. Demtröder III zu entnehmen.

Aufgabe 2: Hückel Methode

Ein besonders einfacher Spezialfall der LCAO Methoden ist die sog. Hückel-Methode zur Beschreibung von π -konjugierten Systemen. Dabei werden nur die Molekülorbitale für die π -Elektronen betrachtet. Diese werden konstruiert durch Linearkombinationen von $2p_z$ -Orbitalen (analog zu den Linearkombinationen von 1s-Orbitalen beim H_2 Molekül). Zur einfacheren Berechnung macht man folgende Annahmen:

- Die π-Elektronen bewegen sich auf einem starren Molekülgerüst (d.h. die inneren s-Elektronen werden nicht berücksichtigt).
- 2) Die Überlappungsintegrale $S_{ab} = \int \varphi_a \varphi_b d\tau$ zwischen benachbarten Atomorbitalen φ_a und φ_b werden vernachlässigt.
- 3) Die Integrale H_{aa} (abhängig nur vom Atomorbital φ_a) und H_{ab} (abhängig von Überlappung zwischen φ_a und φ_b) werden nicht explizit berechnet, sondern als Parameter α und β_{ab} behandelt:

$$\alpha := H_{aa} = \int \varphi_a H \varphi_a d\tau$$
$$\beta_{ab} := H_{ab} = \int \varphi_a H \varphi_b d\tau$$

wobei β_{ab} nur dann von 0 verschieden ist, wenn die Atome a und b durch eine Bindung verbunden sind.

Für ein Molekül aus N Atomen ergeben sich dann N HMOs:

$$\Phi_k = \sum_{i=1}^N c_{ik} \varphi_i , \qquad k = 1, \dots, N$$

a) Zeigen Sie:

Die Energieeigenwerte ϵ_k sowie die Koeffizienten c_{ki} ergeben sich aus den Lösungen des linearen Gleichungssystems

(Hinweis: Berechnen Sie die Energie und minimieren Sie diese bezüglich der Koeffizienten c_{ik} . Nehmen Sie an, dass sowohl Atom- als auch die Molekülorbitale normiert sind.)

- b) Geben Sie damit die Energiewerte sowie die HMOs für Aethylen (H2C=CH2) an.
- c) Versuchen Sie dies für Benzol. Nehmen Sie dazu an daß $\beta_{ij} = \beta$ für alle i,j.

Aufgabe 3: Ionen-Bindung

- (a) Fluorwasserstoff (HF) liegt bei Normalbedingungen (Raumtemperatur, 1 bar) als hochgiftiges Gas vor. Der Gleichgewichtsabstand zwischen dem H und dem F Atom beträgt $d_G = 0.917$ Å, das Dipolmoment des Moleküls beträgt 6.4×10^{-30} Cm. Zu welchem Anteil ist die Bindung ionisch?
- (b) In Ionenkristallen aus Kalium (Ionisationsenergie $I_K = 4.34\,\mathrm{eV}$) und Chlor (Elektronenaffinität $EA_{Cl} = -3.62\,\mathrm{eV}$) beträgt $d_G = 2.67\,\mathrm{\mathring{A}}$. Wie groß ist die Energie, die benötigt wird, um die Ionen zu bilden? Wie groß ist die potenzielle Energie der Anziehung zwischen den als punktförmig angesehenen Ionen in d_G ? Der gemessene Wert für die Dissoziationsenergie E_D^{KCl} beträgt $4.49\,\mathrm{eV}$, wie groß ist der berechnete, wenn Abstoßungsenergien vernachlässigt werden? Wie hoch ist die Abstoßungsenergie in d_G ?